JOURNAL OF THE

THE ALKALINITY OF MAGMA MAGNESIÆ AS DETERMINED BY THE HYDROGEN ELECTRODE. II.*

BY R. B. SMITH AND P. M. GIESY.

In a previous investigation¹ the authors reported on determinations of the $p_{\rm H}$ of pure Magma Magnesiæ, concluding that its $p_{\rm H}$ was 10.51. But in one experiment milk of $p_{\rm H}$ 13.31 was washed free from alkali, when the $p_{\rm H}$, instead of remaining constant at 10.51, continued to fall to 10.20. Since this was rather unsatisfactory, we have continued this work, determining the $p_{\rm H}$ of samples of Magma Magnesiæ washed free from excesses of magnesium sulphate and sodium hydroxide. The results corroborate our earlier conclusions; they show that the $p_{\rm H}$ of pure Magma Magnesiæ lies between 10.51 and 10.54. Distilled water was used in all washings recorded in this work.

SAMPLE NO. 3.

Original milk	$p_{\rm H} = 10.33$
After four washings, boiling, and cooling	$p_{\rm H} = 10.37$
After four more washings, boiling, and cooling	$p_{\rm H} = 10.51$

SAMPLE No. 4.

This was prepared by adding slowly, with constant stirring, 56 Gm. of 45% NaOH solution to 100 Gm. of MgSO₄.7H₂O in 500 cc. of water. Its original $p_{\rm H}$ was 9.48.

After three washings	$p_{\rm H} = 10.20$
After two more washings	$p_{\rm H} = 10.41$
After two more washings	$p_{\rm H} = 10.47$
After two more washings	$p_{\rm H} = 10.57$
After two more washings	$p_{\rm H} = 10.57$
After two more washings	$p_{\rm H} = 10.50$

It is probable that the $p_{\rm H}$ over the period of the last six washings was constant and that the above variations were due to temperature effects.

SAMPLE NO. 5.

This was prepared by adding a solution of 100 Gm. of MgSO₄.7H₂O in 200 cc. of water slowly, with constant stirring, to 45 Gm. of sodium hydroxide in 355 cc. of water. Original $p_{\rm H} = 13.24$.

After four washings	$p_{\rm H} = 11.10$
After three more washings	$p_{\rm H} = 10.56$
After two more washings	$p_{\rm H} = 10.65$
After two more washings	$p_{\rm H} = 10.53$
After two more washings	$p_{\rm H} = 10.53 \ ({\rm T} = 25.3^{\circ} \ {\rm C.})$

SAMPLE NO. 7.

This sample was prepared as follows: 125 Gm. MgCO₃ in 500 cc. H₂O. 85.5 Gm. NaOH in 405 cc. H₂O.

The amount of NaOH used was calculated to give a slight excess to insure the decomposition of all of the MgCO₃. The NaOH was added slowly with stirring to the suspension of MgCO₃ and after the NaOH had been added the whole was stirred mechanically for $1^{1/2}$ hours.

^{*} Scientific Section, A. Ph. A., Buffalo meeting, 1924.

¹ J. A. Ph. A., 12, 955 (Nov., 1923).

Dec. 1924 AMERICAN PHARMACEUTICAL ASSOCIATION

This material was diluted to 4 liters and allowed to settle over Sunday. It was then drained down to about 2 liters and transferred to a 4-gallon cylinder and 2 gallons of water added. It was washed in this cylinder, using 2 gallons of water per washing, until it passed the U. S. P. test for free alkali. It was again transferred to a 4-liter beaker and after it had settled sufficiently to a 2-liter cylinder, where it was allowed to settle for six days. It was then drained off and bottled and then had a volume of 1300 cc.

This had a $p_{\rm H}$ of 10.58 at 22.4° C. It therefore contained only an extremely slight amount of alkali, about 0.00004 N. Nevertheless, a U. S. P. test for free alkali required nine drops of N/10 acid instead of five, the upper limit. This shows the unreliability of the U. S. P. test, and the much greater delicacy of the electrometric $p_{\rm H}$ determination.

THE ALKALINITY OF MAGMA MAGNESIÆ. III. THE EFFECT OF MAGNESIUM CARBONATE.

BY R. B. SMITH AND P. M. GIESY.

In previous investigations by the same authors¹ the p_H of pure milk of magnesia was determined. Samples were prepared by mixing solutions of MgSO₄ and NaOH in such proportions that in some samples there was an excess of MgSO₄ and in the others an excess of NaOH. The p_H of the pure milk was determined by washing these samples with distilled water to constant p_H .

It was determined as a result of these experiments that the $p_{\rm H}$ of pure milk of magnesia was 10.52. During the course of this work several samples washed from high $p_{\rm H}$ values did not come to the $p_{\rm H}$ which we had reason to believe was that of pure Magma Magnesiæ; their $p_{\rm H}$ values continued to fall off, so that values as low as 10.03 were obtained. We were unable to explain this at the time.

A later investigation was made on the washing of milk of magnesia in which $p_{\rm H}$ and soluble matter determinations were made to follow the washing. During the washing of several samples which had had an initial $p_{\rm H}$ of above 10.52, it was noticed that the $p_{\rm H}$ continued to drop even after a $p_{\rm H}$ of 10.52 was attained, while the soluble matter shortly became constant.

A consideration of the solubilities of MgCO₃ and Mg(OH)₂ which are given by Seidell, "Solubilities of Inorganic and Organic Compounds," Second Edition, as MgCO₃ = 0.18 Gm. per liter, solution in equilibrium with air at 20° C.; Mg(OH)₂ = 0.009 Gm. per liter, gave us the idea that the $p_{\rm H}$ of a Mg(OH)₂ suspension might be considerably affected by the presence of MgCO₃. This MgCO₃ could be introduced into the solution by the carbonate impurities of the NaOH used for precipitation, by CO₂ in the distilled water, or by absorption of CO₂ from the air by the alkaline solutions as they were being washed. Since magnesium carbonate is relatively insoluble, its removal by washing would be a slow process and a saturated solution of it would always be present until all the solid MgCO₃ was washed out. This dissolved magnesium carbonate would be expected to depress the solubility and therefore the $p_{\rm H}$ of the magnesium hydroxide suspension by its mass action effect.

1119

¹ J. A. Ph. A., 12, 955 (Nov., 1923).